If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-16x-5=0
a = 5; b = -16; c = -5;
Δ = b2-4ac
Δ = -162-4·5·(-5)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{89}}{2*5}=\frac{16-2\sqrt{89}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{89}}{2*5}=\frac{16+2\sqrt{89}}{10} $
| 6(3x-2)=19x-7(x-6) | | 0.6x+0.5(30)=0.4(x+20) | | -3(x+10)=-61 | | d–21=87 | | 0=x-x+6 | | -x/2=1/8 | | -3(x+10=-61 | | x+67+59=180 | | 2x-5=x+69 | | 5y-20+2y+25=180 | | 2x/x^2-1=5/8 | | m^2−8m−9=0 | | 6+3x-15=39 | | 7y+7(3−y)=2y−9 | | 2x-4(x-4)=-9+5x-17 | | 1+10x-6=53 | | 20+2.50h=11+3.75h | | 3x-29=2x+24 | | 4/5(15x-20)=40 | | h(12)/2=30 | | 6/5x+6=51 | | 9-7x-7x=-145 | | y=2/11+81/2 | | 7n=15-2n | | 5/3m-3/8=1/2m+7/8 | | 9+4x=x+39 | | -192=8(3+8x)+8x | | 36=2(3x+2)+2x | | 9/3x=8/2/3+7/3x | | 5x+1-4x=2 | | x+5=-50+6x | | 3x+5=20-1÷2x |